2022

PHYSICS — GENERAL

(For Syllabus: 2019-2020 and 2018-2019)

Paper: GE/CC-1

(Mechanics)

Full Marks: 50

Candidates are required to give their answers in their own words as far as practicable.

প্রান্তলিখিত সংখ্যাণ্ডলি পূর্ণমান নির্দেশক।

১নং প্রশ্ন এবং অন্য *যে-কোনো চারটি* প্রশ্নের উত্তর দাও।

১। *যে-কোনো পাঁচটি* প্রশ্নের উত্তর দাও ঃ

2×¢

- (ক) $\vec{A} = 2\hat{i} + 4\hat{j} 5\hat{k}$ ও $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$ ভেক্টরছয়ের সঙ্গে লম্ব একক ভেক্টর কী হবে?
- খে) A, B ও C তিনটি বিন্দুর অবস্থান ভেক্টর $\vec{r_1} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{r_2} = 3\hat{i} + 2\hat{j} 3\hat{k}$ ও $\vec{r_3} = 2\hat{i} + 2\hat{j} 3\hat{k}$. ΔABC বিভূজের ক্ষেত্রফল নির্ণয় করো।
- (গ) স্টোকস্ সূত্র ব্যবহার করে প্রমাণ করো $\vec{
 abla} imes \vec{
 abla} \vec{
 abla} = 0$
- (ঘ) কেপলারের সূত্র তিনটি লেখো।
- (৬) Y ইয়ংগুণাঙ্কযুক্ত এবং L দৈর্ঘ্যের একটি তারের টান দিয়ে l দৈর্ঘ্যবৃদ্ধি করতে কৃতকার্য কত হবে?
- (চ) r ব্যাসার্ধের ও S পৃষ্ঠটানযুক্ত একটি তরলের বুদবুদের ভেতরের অতিরিক্ত চাপ কত হবে?
- (ছ) কোনো নৃত্যশিল্পী যখন তার হাত ছড়িয়ে কোনো অক্ষ বরাবর $2.4\ rps$ বেগে চক্রাকারে ঘোরে তখন তার জড়তা ভ্রামক ঘূর্ণাক্ষের সাপেক্ষে I হয়। হাত গুটিয়ে নিলে জাড্য ভ্রামকের মান হয় 0.6I। তার নতুন ঘূর্ণন বেগ কত?
- ২। (f a) $\vec \omega$ একটি স্থির ভেক্টর ও $\vec r$ একটি বিন্দুর অবস্থান ভেক্টর হলে দেওয়া আছে $\vec {
 m v}=\vec \omega imes \vec r$ । প্রমাণ করো $\vec {
 m \nabla}.\vec {
 m v}=0$ ।
 - খে) যদি $\vec{F}=x^2\hat{i}+y^2\hat{j}$ হয়, তবে x-y সমতলে $y=x^2$ রেখা বরাবর $P(0,\,0)$ থেকে $Q(1,\,1)$ পর্যন্ত রেখা সমাকল $\int_{\mathcal{C}} \vec{F}.d\vec{r}$ -এর মান নির্ণয় করো।
 - (গ) p-এর কোন্ মানের জন্য নীচের তিনটি ভেক্টর সমতলীয় হবে? $\vec{A} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{C} = \hat{i} + \hat{j} p\hat{k}$.

9+9+8

- ৩। (ক) দেখাও যে গ্যালিলীও রূপান্তরে নিউটনের সূত্র অপরিবর্তিত থাকে।
 - (খ) একটি কণার কৌণিক ভরবেগ সূত্রটি লেখো ও প্রমাণ করো।
 - (গ) প্রমাণ করো যে কোনো বলক্ষেত্রে কোনো কণার সরণ ঘটলে ওই কণা দ্বারা কৃতকার্য গতিশক্তির পরিবর্তনের সমান হয়। ৩+৩+৪
- 8। (ক) জাড্য ভ্রামকের সংজ্ঞা দাও। একটি R ব্যাসার্ধের কোনো গোলীয় খোলকের ব্যাস বরাবর জাড্য ভ্রামক নির্ণয় করো। এই সম্পর্কটি ব্যবহার করে এর স্পর্শক বরাবর জাড্য ভ্রামকের মান নির্ণয় করো।
 - খে) ভূপৃষ্ঠের কাছাকাছি বৃত্তাকার কক্ষপথে প্রদক্ষিণরত কোনো উপগ্রহের প্রদক্ষিণ বেগ এবং প্রদক্ষিণকালের রাশিমালা নির্ণয় করো। (১+৩+২)+(৩+১)
- ৫। পরবশ কম্পন কী ? m ভরের একটি কণার ওপর প্রত্যানায়ক বল Sx, মন্দন বল Kv ও একটি বাহ্যিক বল $f_o\sin \omega t$ ক্রিয়াশীল। কণার গতির অবকল সমীকরণ লেখো ও সমাধান করো। কখন এর অনুনাদ হবে ? ২+২+৪+২
- ৬। (ক) দেখাও যে কেন্দ্রগ বলক্রিয়ায় কোনো কণার ক্ষেত্রীয় বেগ ধ্রুবক হয়।
 - (খ) দেখাও যে বাঁকানো দণ্ডের মধ্যের অভ্যন্তরীণ টর্ক $\frac{YI}{R}$ হয়। যেখানে Y দণ্ডের ইয়ংগুণাঙ্ক, I-এর জ্যামিতিক জাড্য-ভ্রামক ও R দণ্ডের বক্রতা ব্যাসার্ধ।
 - (গ) কোনো r ব্যাসার্ধের ও l দৈর্ঘ্যের স্থিতিস্থাপক তারের নীচে M ভরের ও R ব্যাসার্ধের চোঙ যুক্ত করে এর ব্যবর্ত দোলন করানো হলে ওই তারের দোলনকাল কত হবে ? ৩+৩+৪
- ৭। (ক) 2 mm ব্যাসের 1000টি জলবিন্দু এক হয়ে একটি বড় জলবিন্দু গঠন করলে শক্তিক্ষয় কত হবে? জলের পৃষ্ঠটান ০.072 N/m।
 - (খ) কোনো কৈশিক নলে জলের উধ্বারোহণ কেন হয়? দেখাও যে এই আরোহণ প্রায় $h=\frac{2S}{gr}$ হয়, যেখানে S জলের পৃষ্ঠটান, r নলের ব্যাসার্ধ ও g অভিকর্ষজ ত্বরণ হয়।

অথবা,

[2018-2019 সিলেবাস]

কোনো এক মুহূর্তে কণার সরণ $x=a\cos\omega t+b\sin\omega t$ । দেখাও যে কণার গতি সরল দোলগতি। যদি $a=0.3~\mathrm{m}$, $b=0.4~\mathrm{m}$ এবং $\omega=2$ হয়, তবে ওই গতির পর্যায়কাল, বিস্তার এবং সর্বাধিক গতিবেগ নির্ণয় করো।

(গ) তরলের পৃষ্ঠটানের ওপর তাপমাত্রার প্রভাব কী?

3

[English Version]

The figures in the margin indicate full marks.

Answer question no. 1 and any four from the rest.

1. Answer any five questions:

 2×5

- (a) Find a unit vector normal to $\vec{A} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and $\vec{B} = \hat{i} + 2\hat{j} + 3\hat{k}$.
- (b) The position vectors of three points A, B and C are $\vec{r_1} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{r_2} = 3\hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{r_3} = 2\hat{i} + 2\hat{j} 3\hat{k}$. Find the area of the triangle.
- (c) Using Stoke's law, prove that $\vec{\nabla} \times \vec{\nabla} \phi = 0$.
- (d) Write down the three laws of Kepler.
- (e) To increase the length of a wire of length L and Young's Modulus Y by an amount l by stretching it how much work is done?
- (f) What is the excess pressure inside a liquid bubble of radius r and whose surface tension is S?
- (g) A dancer when spreads out her hands and rotates about an axis at an angular speed 2.4 *rps*, then her moment of intertia is I. When she puts her hands close to her chest then moment of inertia becomes 0.6 *I*. Find her new angular speed.
- 2. (a) $\vec{\omega}$ is a constant vector and \vec{r} is the position vector of a point. If $\vec{\mathbf{v}} = \vec{\omega} \times \vec{r}$, then prove that $\vec{\nabla} \cdot \vec{\mathbf{v}} = 0$.
 - (b) If $\vec{F} = x^2 \hat{i} + y^2 \hat{j}$, then find the line integral $\int_c \vec{F} \cdot d\vec{r}$ in the x y plane along a line $y = x^2$ from P(0, 0) to Q(1, 1).
 - (c) For what value of p the following 3 vectors will be coplanar? $\vec{A} = 3\hat{i} + 2\hat{j} + \hat{k}$, $\vec{B} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{C} = \hat{i} + \hat{j} - p\hat{k}$.

3+3+4

- 3. (a) Show that Newton's laws remain invariant under Galilean transformation.
 - (b) State and prove the angular momentum conservation rule for a particle.
 - (c) Prove that in a force field if a particle is displaced, then the work done by the particle is equal to the change in kinetic energy.

 3+3+4
- **4.** (a) Define moment of intertia. Find the moment of inertia of a spherical shell of radius *R* along its diameter. Find the moment of inertia about the tangent using the above derived expression.
 - (b) Find the expression for the orbital speed and the time period of revolution of a satellite in a circular orbit close to the surface of the earth. (1+3+2)+(3+1)

- 5. What is forced vibration? On a particle of mass m, a restoring force Sx, a damping for Kv and an external force $f_o \sin \omega t$ are acting. Write the differential equation and solve it. When resonance will take place? 2+2+4+2
- 6. (a) Show that the areal velocity of a particle remains constant under central force.
 - (b) Show that the internal torque inside a bent beam is $\frac{YI}{R}$, where Y is the Young's modulus of the material of the beam, I is the geometrical moment of inertia of the beam and R is the radius of curvature of the bent beam.
 - (c) A cylinder of mass M and radius R is attached to a wire of length l and radius r. Find the time period of the torsional oscillation. 3+3+4
- (a) 1000 water droplets of diameter 2 mm coalease to form a large drop. What will be the loss of energy? The surface tension of water is 0.072 N/m.
 - (b) Why water level rises inside a capillary tube? Show that the rise is approximately equal to $h = \frac{2S}{gr}$, where S is the surface tension of water, r is the radius of the capillary tube and g is acceleration due to gravity.

Or, [2018-2019 Syllabus]

The displacement of a particle at a time 't' is given by $x = a \cos \omega t + b \sin \omega t$. Show that the motion of the particle is simple harmonic. If a = 0.3 m, b = 0.4 m and $\omega = 2$, then find the time period, maximum velocity, amplitude of the particle.

(c) How surface tension of a liquid varies with temperature?

2